coronavirus-news
Πότε θα τελειώσει η πανδημία; – Οι προβλέψεις για την Ελλάδα
Απάντηση στο μεγάλο ερώτημα: πότε θα τελειώσει η πανδημία, επιχειρεί να δώσει το τεχνολογικό πανεπιστήμιο της Σιγκαπούρης και ο καθηγητής Γιανξί Λούο, αν και όπως δείχνουν τα επιστημονικά δεδομένα είναι ένα συμπέρασμα που δεν μπορεί να βγει εύκολα.
Όπως τονίζεται στην σχετική έρευνα οι πανδημικοί κύκλοι ζωής ποικίλλουν ανάλογα με τις χώρες και ενδέχεται να υπάρχουν διαφορετικά μοτίβα σε ένα συγκεκριμένο χρονικό πλαίσιο.
Στις 13 Ιουλίου η έξοδος της Ελλάδας από την πανδημία;
Αναφορικά με την Ελλάδα οι ερευνητές από τη Σιγκαπούρη εκτιμούν ότι το σημείο καμπής ήταν η 30η Μαρτίου, το 97% των κρουσμάτων θα καταγραφεί την 9η Μαΐου.
Το 99% θα καταγραφεί στις 25 Μαΐου, ενώ το τέλος της πανδημίας για τη χώρα μας εκτιμάται στις 13 Ιουλίου.
Σύμφωνα με τις αναλύσεις του ιδρύματος, το σημείο καμπής για την πανδημία σε ολόκληρο τον πλανήτη συνολικά, ήταν η 11η Απριλίου, ενώ την 30η Μαρτίου καταγράφηκε το 97% των κρουσμάτων και το 99% θα καταγραφεί την 17η Ιουνίου ενώ το τέλος της πανδημίας αναμένεται στις 9 Δεκεμβρίου του 2020.
Εφαρμόζοντας τη μέθοδο predictive monitoring (προγνωστική παρακολούθηση ή παρατήρηση-καταγραφή προγνώσεων), ο καθηγητής Λούο και οι συνεργάτες του στο Πανεπιστήμιο της Σιγκαπούρης κατασκεύασαν ένα πειραματικό εργαλείο ειδικά για την εξέλιξη της πανδημίας.
Με βάση τα συμπεράσματα των ερευνητών, η Ελλάδα θα προηγηθεί συγκριτικά με τις περισσότερες χώρες της υφηλίου, καθώς ο Λούο προβλέπει ότι τα κρούσματα στις ΗΠΑ θα εκλείψουν στις 5 Σεπτεμβρίου, στη Βρετανία στις 20 Αυγούστου και στη «χαλαρή» Σουηδία στις 17 Οκτωβρίου.
Η Ιταλία ελευθερώνεται στις 30/8, η Ισπανία πιο νωρίς, στις 2 του ίδιου μήνα, ενώ η ημέρα ανεξαρτησίας από την πανδημία για το Κατάρ θα έρθει τον Φεβρουάριο και για το Μπαχρέιν τον Απρίλιο του 2021. Οσο για την (κατά μέσο όρο) παγκόσμια ανάσα ανακούφισης, αυτή τοποθετείται στις 27 Νοεμβρίου 2020.
Η «προγνωστική παρακολούθηση»
Η δυνατότητα προσδιορισμού συγκεκριμένης ημερομηνίας για το τέλος της πανδημίας είναι ένα από τα στοιχεία που κάνουν τη μεθοδολογία του Γιανξί Λούο να ξεχωρίζει από οποιαδήποτε άλλη απόπειρα των επιστημόνων να προεικάσουν το άμεσο μέλλον. Το πλεονέκτημα αυτό προκύπτει από την ίδια τη φύση του εργαλείου που χρησιμοποιείται στο εν λόγω ερευνητικό εργαστήριο. Συνεκτιμώντας πολλούς και ποικίλους παράγοντες, η προγνωστική παρακολούθηση είναι εστιασμένη στο μέλλον και όχι απλώς στην ανάλυση των ήδη διαθέσιμων δεδομένων.
Στον πυρήνα του predictive monitoring βρίσκεται η απεικόνιση της πανδημίας σε καμπύλη τύπου καμπάνας αντί για το οριζοντιωμένο «S». Η επιλογή αυτή, πάντα κατά τον καθηγητή Λούο, συναρμόζεται καλύτερα με τα υπόλοιπα χαρακτηριστικά της μεθόδου του, εφόσον αποτυπώνει εναργώς τον κύκλο ζωής της μεταδοτικής νόσου. Οι επιστήμονες γνωρίζουν, ούτως ή άλλως, ότι οι φάσεις εξέλιξης μιας επιδημίας έχουν την ίδια πάντα ακολουθία: αρχική εκδήλωση, επιτάχυνση της διάδοσης, σημείο καμπής όπου τα κρούσματα της μίας ημέρας είναι λιγότερα από εκείνα της προηγούμενης, κατόπιν επιβράδυνση και τελική υποχώρηση.
Στην περίπτωση του COVID-19, τα μοντέλα των ερευνητών από το Πολυτεχνείο της Σιγκαπούρης παρουσιάζουν μια «καμπάνα», διαφορετική από χώρα σε χώρα, αλλά με ένα κοινό γνώρισμα: την «ουρά», δηλαδή μια γραμμή περίπου παράλληλη με τον οριζόντιο άξονα του γραφήματος – τον άξονα του χρόνου, αναφέρει το protothema. Η ερμηνεία αυτού του χαρακτηριστικού είναι αυτονόητη. Μετά την άνοδο, την κορύφωση και την πτώση του αριθμού κρουσμάτων, η καμπύλη γίνεται επίπεδη, παραμένοντας σε πολύ χαμηλές τιμές, έως ότου φτάσει στο μηδέν, όπου και διακόπτεται.
Γενικώς, το σχήμα της «καμπάνας» που σχηματίζει το πλήθος των κρουσμάτων ανά χώρα σε συνάρτηση με τον χρόνο επηρεάζεται από παράγοντες όπως η διαδικασία της μόλυνσης, οι ιδιαιτερότητες του εκάστοτε ιού, τα στοιχεία του πληθυσμού (π.χ. ηλικιακή σύνθεση, κυρίαρχη νοοτροπία, θρησκευτικές πεποιηθήσεις κ.λπ.), καθώς και οι αντιδράσεις στην επιδημία. Το πώς προσαρμόζονται -ή αψηφούν- στα μέτρα προστασίας τόσο τα άτομα όσο και οι θεσμικοί παράγοντες διαμορφώνει την εικόνα της καμπύλης.
Ένα άλλο κρίσιμο συστατικό στη συνταγή της σιγκαπουριανής μεθόδου είναι η έμφαση στον δείκτη ασθενών SIR (Susceptible-Infected-Recovered, δηλαδή Ευάλωτοι-Νοσούντες-Αναρρώσαντες ή και νεκροί). Υπεραπλουστεύοντας κάπως το ερευνητικό μοντέλο SIR, βασίζεται σε δύο παραμέτρους, τη Β και τη Γ, προκειμένου να υπολογίσει τις τρεις μεταβλητές των ευάλωτων, των ήδη νοσούντων και των ανθρώπων εκείνων που έχουν ήδη, με κάποιον τρόπο, ξεπεράσει τη νόσο. Η παράμετρος Β αφορά: α) στις ημέρες κατά τις οποίες το εκάστοτε κρούσμα μπορεί να μεταδώσει τον ιό και β) στη φύση αυτού του ιού. Η παράμετρος Γ είναι ο μέσος αριθμός των ανθρώπων που μολύνθηκαν από κάποιον φορέα, καθώς και στοιχεία από το πώς γίνεται η διάδοση στον υπό μελέτη πληθυσμό – και πάλι σε σχέση με την επιθετικότητα που διαθέτει ο ιός.
Πάντως, ο Γιανξί Λούο ισχυρίζεται ότι «η εκ προοιμίου προσδοκία μας από τη μέθοδο του predictive monitoring είναι ότι οι προβλέψεις μας για τις ακριβείς ημερομηνίες εξόδου από την κρίση ανά χώρα θα αλλάζουν. Ειδικά όταν τα σενάρια που σχεδιάζονται για την πραγματική ζωή, όπως τα μέτρα που αποφασίζονται από τις κατά τόπους κυβερνήσεις αλλά και η συμπεριφορά των ανθρώπων, βρίσκονται σε διαρκή και ταχεία μεταβολή. Άρα, οι αλλαγές σε προβλεπόμενα θεωρητικά γεγονότα, όπως ας πούμε το τέλος της πανδημίας, μπορεί απλώς να μαρτυρούν την αβεβαιότητα που υπάρχει στον κόσμο μας».
You must be logged in to post a comment Login